Predefined kernels
While it is certainly possible to define your own kernel, doing so efficiently can be non-trivial and time-consuming. IFGF.jl provides a few predefined kernels that are commonly used in practice. If you need a kernel that is not listed here, or if you have implemented a custom kernel and would like for it to be added to the library, please open an issue and/or PR on the GitHub repository.
The kernel-specific API is heavily inspired by the FMM3D library, and provides functions to efficiently compute sums of the form
\[u(\boldsymbol{x}_i) = \sum_{j=1}^N G(\boldsymbol{x}_i - \boldsymbol{y}_j) c_j +\gamma_{1,\boldsymbol{y}} G(\boldsymbol{x}_i - \boldsymbol{y}_j) v_j,\]
where $\boldsymbol{x_i}$ are the target locations, $\boldsymbol{y}_j$ are the source locations, $G(\boldsymbol{x} - \boldsymbol{y})$ is (up to a constant factor) the fundamental solution of a given partial differential operator, $\gamma_{1,\boldsymbol{y}}$ its (generalized) Neumann trace, and $c_i,v_i$ are input vectors of the appropriate size. IFGF.jl computes the sum above in log-linear complexity.
Each predefined kernel comes with an associated plan
function that precomputes the necessary data structure required to efficiently apply the forward map. If you need to compute the forward map multiple times with the same kernel, it is a good idea to build a plan.
In the following, we provide a brief overview of the predefined kernels.
All predefined kernels support single-precision arithmetic. If you do not need double-precision, you can save memory and computation time by using single-precision to represent your data.
Laplace 3D operator
IFGF.laplace3d
— Functionlaplace3d(targets, sources; charges = nothing, dipvecs = nothing, grad =
false, kwargs...)
Compute the sum
\[u(\boldsymbol{x}_i) = \sum_{j=1}^n \frac{c_j}{|| \boldsymbol{x}_i - \boldsymbol{y}_j ||} - \frac{(\boldsymbol{x}_i - \boldsymbol{y}_j)^\top v_j}{|| \boldsymbol{x}_i - \boldsymbol{y}_j ||^3} ,\]
where $c_j$ are the charges
and v_j
are the dipvecs
.
Input:
targets::Matrix{T}
:3 x n
matrix of target points.sources::Matrix{T}
:3 x m
matrix of source points.charges::Vector{T}
: vector ofn
charges.dipvecs::Matrix{T}
:3 x m
matrix of dipole vectors.grad::Bool
: iftrue
, the gradient is computed insteadkwargs...
: additional keyword arguments passed toassemble_ifgf
(e.g.tol
)
Output
u
: the potential at the target points ifgrad=false
, or the gradient as a3 x n
matrix ifgrad=true
.
Forward map:
using IFGF
m = 100_000
targets = sources = rand(3, m)
charges = rand(m)
dipvecs = rand(3,m)
IFGF.laplace3d(targets, sources; charges, tol=1e-4)
100000-element Vector{Float64}:
97275.90663479632
85615.07647178617
108228.48388642876
82272.8660121476
68054.01977632476
99911.24126839136
91588.6463015972
84028.6886121075
90198.04368304361
102134.2694682958
⋮
79445.94879050551
101466.92017509496
91116.8007449042
91815.65869005359
80944.18713845665
78168.26765462913
78948.10715639617
83605.71958075691
88114.51117406323
Plan and forward map:
L = IFGF.plan_laplace3d(targets, sources; charges, dipvecs, tol=1e-4)
out = zero(charges)
IFGF.laplace3d!(out, L; charges, dipvecs)
100000-element Vector{Float64}:
-18793.92360803263
43952.618943565394
207207.83046361338
-100803.1205071884
114864.82713589253
138073.27412826527
81247.419487003
131929.20458311465
96216.5459758685
187471.019137077
⋮
125941.57101007292
88955.8471379106
177587.80608160037
-59029.41660573503
38682.625442183125
95779.01120395274
-104871.95295999388
89380.29061228389
140543.6924905796
Helmholtz 3D operator
IFGF.helmholtz3d
— Functionhelmholtz3d(k, targets, sources; charges = nothing, dipvecs = nothing, grad =
false, kwargs...)
Compute the sum
\[u(\boldsymbol{x}_i) = \sum_{j=1}^n \frac{c_j e^{i k || \boldsymbol{x}_i - \boldsymbol{y}_j ||}}{|| \boldsymbol{x}_i - \boldsymbol{y}_j ||} + \nabla_{\boldsymbol{y}}^\top \left( \frac{e^{i k || \boldsymbol{x}_i - \boldsymbol{y}_j ||}}{|| \boldsymbol{x}_i - \boldsymbol{y}_j ||} \right) v_j,\]
where $c_j$ are the charges
and v_j
are the dipvecs
.
Input:
k
: the wavenumber.targets::Matrix{T}
:3 x n
matrix of target points.sources::Matrix{T}
:3 x m
matrix of source points.charges::Vector{Complex{T}}
: vector ofn
charges.dipvecs::Matrix{Complex{T}}
:3 x m
matrix of dipole vectors.grad::Bool
: iftrue
, the gradient is computed insteadkwargs...
: additional keyword arguments passed toassemble_ifgf
.
Output
u
: the potential at the target points ifgrad=false
, or the gradient as a3 x n
matrix ifgrad=true
.
Forward map:
using IFGF
m = 100_000
targets = sources = rand(3, m)
charges = rand(ComplexF64,m)
dipvecs = rand(ComplexF64,3,m)
k = 2π
IFGF.helmholtz3d(k, targets, sources; charges, tol=1e-4)
100000-element Vector{ComplexF64}:
-3243.300512356839 - 8117.369304174505im
-56933.31907836979 - 24780.380794319313im
-62433.528917150965 - 26728.817007239188im
4917.94479504552 - 5143.59908848029im
-11009.092685643156 - 15854.40827673315im
-37709.83121433167 - 19906.23743634126im
-35961.74275210078 - 19805.578260938953im
-25877.739606858253 - 17717.391802810926im
-48518.00626509611 - 24589.413318434665im
-22456.313328955544 - 13955.025365157679im
⋮
-35071.345463282036 - 20703.336984143127im
-5366.507578187988 - 7548.747491729477im
-4675.841885738251 - 12612.18123993253im
-4011.2166413238892 - 10426.576890068085im
-51711.063775224466 - 22225.17066957883im
-32116.903793523947 - 18578.3913347249im
-16482.333140847226 - 14279.837444868946im
4498.781930463909 - 4057.2636284080145im
-31856.046873321488 - 17828.690694694244im
Plan and forward map:
L = IFGF.plan_helmholtz3d(k, targets, sources; charges, dipvecs, tol=1e-6)
out = zero(charges)
IFGF.helmholtz3d!(out, L; charges, dipvecs)
100000-element Vector{ComplexF64}:
-106769.2431649079 - 27799.981683397986im
-409542.6130361583 - 100846.55408547701im
248748.67226259015 + 46559.7464700741im
-22871.373174728975 - 45955.35642446423im
-232002.27382100132 - 92748.59900914202im
241443.42639861532 + 54856.870487335706im
234477.19374100555 + 46509.008244638244im
3705.6447638072204 + 28516.18538331025im
-291769.36395134847 - 56535.53549137121im
-126878.12655769344 - 44389.99305956374im
⋮
112098.1876399829 - 4246.877042546646im
-265676.78068018804 - 125761.84021822008im
174927.91877509234 + 64912.58601866248im
-39410.71451174546 - 59822.752792897736im
-102871.57495747026 - 43938.435761248315im
95373.32737615955 + 11222.300393959598im
-18854.007963548713 + 12469.881253577892im
-44142.187357732764 - 110295.63230902613im
-399819.0881164571 - 131495.57635338441im
Stokes 3D operator
Stokes 3D operator should be considered experimental. Please report any issues you encounter.
IFGF.stokes3d
— Functionstokes3d(targets, sources; stoklet = nothing, strslet = nothing, strsvec =
nothing, grad = false, kwargs...)
Compute the sum
\[u(\boldsymbol{x}_i) = \sum_{j=1}^n \left( \frac{I}{d} + \frac{\boldsymbol{r}_{ij}\boldsymbol{r}_{ij}^\top}{2d_{ij}^3} \right) \boldsymbol{\sigma}_j + \frac{3(\boldsymbol{\nu}_j \cdot \boldsymbol{r}_{ij})(\boldsymbol{\mu}_j\cdot\boldsymbol{r}_{ij}) \boldsymbol{r}_{ij}}{d_{ij}^5},\]
where $\boldsymbol{r}_{ij} = |\boldsymbol{x}_i - \boldsymbol{y}_j|$, $d_{ij} = |\boldsymbol{r_{ij}}|$, $\boldsymbol{\sigma}_j$ are the Stokeslet strengths, $\boldsymbol{\mu}_j$ are the stresslet strengths, and $\boldsymbol{\nu}_j$ are the stresslet orientations.
Input:
targets::Matrix{T}
:3 x n
matrix of target points.sources::Matrix{T}
:3 x m
matrix of source points.stoklet::Matrix{T}
:3 × n
matrix of stokesletsstrslet::Matrix{T}
:6 x m
matrix of stresslet densities (indices1:3
) and orientations (indices4:6
)grad::Bool
: iftrue
, the gradient is computed insteadkwargs...
: additional keyword arguments passed toassemble_ifgf
.
Output
u
:3 x n
matrix giving the velocity at the target points ifgrad=false
, or3 x 3 × n
matrix representing the gradient ofu
ifgrad=true
.
Forward map:
using IFGF
m = 100_000
targets = sources = rand(3, m)
stoklet = rand(3,m)
strslet = nothing
IFGF.stokes3d(targets, sources; stoklet, strslet, tol=1e-4)
3×100000 Matrix{Float64}:
76455.2 55198.2 51014.8 58654.1 … 66863.1 56297.1 54452.2 74033.3
76444.0 42446.6 60076.9 62257.6 58679.4 55132.3 63695.4 75472.6
74170.0 52306.3 59855.9 63533.5 68993.6 56325.7 63275.4 75223.5
Plan and forward map:
L = IFGF.plan_stokes3d(targets, sources; stoklet, strslet, tol=1e-4)
out = zero(stoklet)
IFGF.stokes3d!(out, L; stoklet)
3×100000 Matrix{Float64}:
76455.2 55198.2 51014.8 58654.1 … 66863.1 56297.1 54452.2 74033.3
76444.0 42446.6 60076.9 62257.6 58679.4 55132.3 63695.4 75472.6
74170.0 52306.3 59855.9 63533.5 68993.6 56325.7 63275.4 75223.5